Magik-stroy.ru

Меджик Строй
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

От чего зависит величина угла естественного откоса

Угол естественного откоса — Angle of repose

Угол естественного откоса , или критический углом естественного откоса , из гранулированного материала является крутым углом спуска или погружений по отношению к горизонтальной плоскости , в которой материал может быть свалил растекание. Под этим углом материал на грани откоса находится на грани скольжения. Угол естественного откоса может составлять от 0 ° до 90 °. Морфология материала влияет на угол естественного откоса; гладкие округлые песчинки не могут быть сложены так круто, как грубые, взаимосвязанные пески. На угол естественного откоса также могут повлиять добавки растворителей. Если небольшое количество воды способно заполнить промежутки между частицами, электростатическое притяжение воды к минеральным поверхностям увеличит угол естественного откоса и связанные с этим величины, такие как прочность почвы .

Когда сыпучие сыпучие материалы насыпают на горизонтальную поверхность, образуется коническая куча. Внутренний угол между поверхностью сваи и горизонтальной поверхностью известен как угол естественного откоса и связан с плотностью , площадью поверхности и формой частиц, а также коэффициентом трения материала. Материал с низким углом естественного откоса образует более плоские груды, чем материал с большим углом естественного откоса.

Этот термин также используется в механике , где он относится к максимальному углу, под которым объект может упираться в наклонную плоскость без скольжения вниз. Этот угол равен арктангенс от коэффициента статического трения μ s между поверхностями.

Когда гранулированный или порошкообразный материал ( песок , гравий , валуны (но также: металлическая стружка , мука , сахарная пудра , сухой снег и т. Д.) Осаждается под действием силы тяжести (по вертикали) на поверхность, он имеет тенденцию образовываться, когда достаточно зерно укладывается в стопку конической формы. Угол наклона конуса в значительной степени является характеристикой:

  • природа частиц (кремнезем, сахар, металл и т. д.);
  • геометрия частиц (сферы, сфероиды, выпуклые многогранники, звездчатые многогранники, дробленые зерна), их размеры (крупные частицы образуют более плоский конус) и однородность их размеров по всему осадку;
  • содержание воды в почве : он считается равным нулю / незначителен для порошкообразных лабораторных материалов, но очень изменчив по своей природе.

Если повторить эксперимент несколько раз с одним и тем же материалом, угол будет более или менее постоянным; этот угол называется углом естественного откоса, а точнее — углом естественного откоса земли.

Классическая интерпретация

В этой интерпретации каждое зерно в куче оседает без начальной скорости. Перейдем к анализу равновесия частицы или зерна, нанесенных на свободную поверхность конуса. Отметим φ угол, который эта свободная поверхность образует с горизонталью. Это зерно подлежит:

  • его весу , активный компонент которого имеет тенденцию заставлять частицу скользить по поверхности; диаграмма показывает, что W → < displaystyle < vec >>S → < displaystyle < vec >>S = W × sin φ;
  • трению частиц склона, которое приводит к силе , параллельной наклону и противоположной S; Т → < displaystyle < vec>>

Законы механики позволяют определить интенсивность этих различных сил:

  • по закону взаимных действий , N + W × cos φ = 0
  • согласно закону трения Кулона (закон сухого трения) трение имеет интенсивность T от 0 до μ × N , где μ — коэффициент статического трения между зернами (μ обычно находится между 0 и 1);
  • наконец, записывается равновесие частицы ( фундаментальный принцип статики ), то есть в проекции на поверхность склона:
    W → + Т → + НЕТ → знак равно 0 → < displaystyle < vec > + < vec> + < vec > = < vec <0>>>
    S + T = 0.

Комбинация этих отношений дает:

W × sin φ + T = 0, причем — μ × W × cos φ

  • Если tan φ ≤ μ, то T = — W × sin φ;
  • если, с другой стороны, tan φ> μ, то T = -μ × W × cos φ, но равновесие нарушается, потому что S превосходит T, и частица скользит по склону, пока не будет перехвачена частицами, которые ранее поскользнулись, скажем, на точка б : затем образует новый слой откоса, параллельный предыдущему.

Таким образом, частицы на поверхности склона на самом деле являются частицами, которые соскользнули и столкнулись с нижними частицами. Они проходят незадолго до остановки силе

Т знак равно — μ × W × потому что ⁡ φ < displaystyle T = - mu times W times cos < varphi>> .

Это замечание позволяет определить угол наклона φ: поскольку

W × грех ⁡ φ + Т знак равно 0 < displaystyle W times sin < varphi>+ T = 0> ,

загар ⁡ φ знак равно μ < displaystyle tan < varphi>= mu> .

Таким образом, классическая теория определяет угол осыпи и угол межкристаллитного трения.

Концептуальные приложения

Естественный угол наклона, равный углу межкристаллитного трения, используется в любом применении, связанном с порошками или порошкообразными материалами в целом:

  • профиль набережной ( старые укрепления );
  • расчет бункеров на хранение зерна ;
  • спекание металлических порошков в металлургии;
  • подпорные стены и шпунтовые шторы ;
  • шейкер-носители .

Пределы концепции

Классический анализ может дать представление только об угле межкристаллитного трения по следующим причинам:

  • предполагается, что баланс наклона не зависит от геометрии зерен. Это может быть оправдано, если учесть, что зерна имеют очень неоднородную геометрию и что, в конце концов, если угол наклона объединяет информацию о геометрическом взаимодействии, этого будет достаточно для размерных структур. Но на практике в промышленности очень часто используются материалы, имеющие однородную геометрию; однако может наблюдаться различие в поведении «прокатанных» зерен (галька) и угловатых зерен («раздробленных»), и интересно иметь возможность принять это во внимание априори ;
  • с другой стороны, штабель имеет, по крайней мере, изначально рыхлую структуру, и наклон со временем оседает под собственным весом: доля пустых пространств уменьшается, что увеличивает кажущийся угол трения (закон Caquot ). Также не безразлична шкала измерения (то есть высота рассматриваемой сваи) угла наклона;
  • В случае семян овощных культур также происходит измельчение части зерна, поскольку зерна в основании кучи не однородны с зернами в верхней части силоса.

Угол естественного откоса с различными опорами

Различные опоры изменяют форму сваи, в приведенных ниже примерах с песком, но естественный угол наклона остается постоянным.

Установка для определения угла естественного откоса (чертеж), состоящая из следующих узлов: воронки I, консольной стойки II, плиты III и цилиндра IV.

4.1. Воронка (/) из нержавеющей стали или полированного алюминия, имеющая носок внутренним диаметром 6 мм, состоит из двух частей, между которыми с помощью резьбового соединения закреплено сито с размером отверстий 1 мм.

Воронка на винтах крепится к подставке или нижняя часть воронки имеет наружную резьбу, с помощью которой воронка крепится к консольной стойке.

4.2. Опорная плита минимальной длиной 270 мм и минимальной шириной 200 мм (270 мм). Плита должна быть максимально недеформируемой и изготовлена из мрамора, нержавеющей стали или другого коррозионностойкого металла. На полированной поверхности опорной плиты проведены четыре прямых линии под углом 45° друг к другу, на пересечении этих линий находится установочный штифт, который фиксирует расположение блока шаблона для правильной установки воронки по высоте.

Регулирование уровня обеспечивается тремя регулируемыми по высоте подставками.

Допускается жестко закреплять плиту на трех винтовых опорах (установочных винтах), служащих для регулирования ее горизонтального положения.

4.3. Подставка воронки выполнена из нержавеющей стали. Она укреплена на плите так, чтобы ось воронки располагалась перпендикулярно к плите и проходила через ее центр.

4.4. Блок высоты (цилиндр) представляет собой металлический цилиндр с полированной поверхностью высотой 40,0 мм. Основание блока имеет выемку для центрального установочного штифта на опорной плите.

Результаты исследования

Скорость витания продуктов размола зерна определяли с помощью действующего пневмоклассификатора типа РПК-30 (рис. 1), пульта контрольно-измерительных приборов (амперметр, вольтметр), трансформатора, весов лабораторных ВМ 512 (весы, соответствующие высокому II классу точности по ГОСТ 24104-2001), манометра дифференциального цифрового ДМЦ-01 М, шлангов силиконовых, линейки миллиметровой, сита, трубок Пито в соответствии с ГОСТ 8.361-79.

Для определения скорости витания частиц проводится тарировка пневмоклассификатора. Скорость потока в пневмопроводе 3 замеряется манометром 9 дифференциальным цифровым ДМЦ-01 М и трубкой Пито 10 по двум взаимно перпендикулярным плоскостям. Число точек замера принято равным 10 при диаметре пневмопровода 55 мм.

Рис. 1. Лабораторная установка

Замер осуществляется следующим образом: трубку Пито подсоединяют к мано­метру и наконечник трубки помещают в точки замера от первой до десятой. Показания микроманометра регистрируют, по полученным данным строят тарировочный график зависимости скорости воздушного потока в пневмопроводе от напряжения на обмотке электродвигателя привода вентилятора.

В стол 7 встроен рычажный механизм 6, который поднимает и опускает стойку, прижимающую стакан 4 с навеской, выполненный с сетчатым дном, масса навески варьирует в пределах от 0 до 30 г.

Исходную навеску исследуемого материала массой 10 г засыпают в стакан 4, который встраивается в пневмопровод 3, крепящийся к стойке, находящейся в положении «НИЗ». Рычажным механизмом 6 стойку поднимают в положение «ВЕРХ», тем самым прижимая стакан 4 к верхней части пневмопровода, соединенного с циклоном 2.

Частота вращения рабочего органа вентилятора регулируется трансформатором за счет изменения напряжения электрической цепи двигателя.

Технологический процесс работы пневмоклассификатора происходит следующим образом: вентилятор создает в циклоне разрежение, которое передается по пнемвопроводу 3, создавая в нем восходящий поток воздуха, частицы материала, находящиеся в стакане 4, начинают подниматься (витать), легкие частицы выносятся в циклон 2 и осаждаются в стакан 5. Выделенную фракцию из стакана 5 убирают и увеличивают напряжение электрической цепи двигателя вентилятора, тем самым увеличивая восходящий поток воздуха, который выносит частицы, скорость витания которых меньше скорости потока. После того как из стакана 5 удаляют следующую фракцию, опыт повторяют до тех пор, пока в стакане 4 остается исследуемый материал. В ходе пневмоклассификации продуктов размола зерна после трех повторностей получены зависимости полноты извлечения по скоростям витания, данные приведены в табл. 1.

Таблица 1. Результаты пневмокласификации продуктов размола зерна после I дранной системы

ПоказательСкорость витания, м/с
1,251,51,7522,252,52,7533,253,53,7544,55
Масса, г0,090,40,810,750,580,232,681,131,41,20,340,120,10,17
Полнота извлечения, %0,948,17,55,82,326,811,314123,41,211,7

По данным таблицы построен график зависимости полноты извлечения продуктов размола зерна после I дранной системы по скорости витания (рис. 2). Проанализировав график, можно сказать о том, что продукты размола по скорости витания условно можно разделить на три класса: I — до 2,5 м/с; II — от 2,5 до 3 м/с; III — свыше 3,5 м/с.

Рис. 2. Полнота извлечения продуктов размола зерна в зависимости от скорости витания

Кроме того, следует отметить, что при пневмоклассификации продукты размола разделяются не только по размеру, но и по добротности (удельной плотности), в отличие от сит, которые разделяют лишь по размерным характеристикам. Таким образом, применение пневмоклассификации в мукомольном производстве является актуальной задачей, связанной с возможностью объединения двух операций: сортирование продукта по величине и его обогащение без применения ситовеек.

Определение угла естественного откоса проводилось согласно имеющимся методикам [2, 3].

Рис. 3. Схема устройства для измерения угла естественного откоса сыпучих материалов: 1 — штатив; 2 — воронка; 3 — разборная доска; 4 — конус; 5 — угломер

Углом естественного откоса называют угол α, образуемый линией естественного откоса (отвала) сыпучего материала с горизонтальной плоскостью. Величина угла естественного откоса зависит от сил трения, возникающих при перемещении частиц сыпучего материала относительно друг друга, и сил сцепления между ними. Угол α может быть измерен с помощью простейшего устройства, изображенного на рис. 3, 4.

В кронштейне штатива 1 устанавливается воронка 2 так, чтобы нижний срез воронки располагался над разборной доской 3 на расстоянии 150 мм.

Взвешивают навеску исследуемого материала не менее 100 г и засыпают в воронку 2 при закрытой заслонке.

Материал выпускают из воронки 2 на разборную доску 3, плавно открывая заслонку, в результате чего там образуется конус 4 из материала.

Затем с помощью угломера 5 измеряют угол наклона α образующей этого конуса к горизонту — угол естественного откоса исследованного материала (рис. 3).

Величина угла α зависит от состояния поверхности опорной площадки. Чем меньше шероховатость этой поверхности, тем меньше угол естественного откоса. Снижается значение угла α и в том случае, когда горизонтальная опорная поверхность вибрирует.

Согласно данной методике проводились исследования по определению угла естественного откоса для продуктов размола зерна, предварительно разделенных по скоростям витания. Данные по эксперименту представлены в табл. 2.

Таблица 2. Угол естественного откоса продуктов размола зерна по скоростям витания частиц, град.

№ п/пСкорость витания частиц, м/сПродукты размола зерна после I дранной системы
до 2до 3до 4свыше 4
13646484348
23744474248
33645484347
Среднее36,34547,642,647,6

По данным табл. 2 можно сделать вывод, что при скоростях витания до 2 м/с выделяется основная часть мелкой крупки. С ростом скорости витания угол естественного откоса увеличивается, что обусловлено большим количеством оболочек в выделяемой фракции, что способствует увеличению внутреннего трения. Однако при скорости витания свыше 4 м/с угол естественного откоса уменьшается, что свидетельствует о снижении количества оболочек в выделенной фракции и наличии в ней крупной крупки.

Все это подтверждает возможность разделения продуктов размола зерна как минимум на три фракции аэродинамическим способом.

Поверхность подпорных стенок (кроме подошвы фундамента) со стороны грунта защищается гидроизоляционным слоем. В качестве гидроизоляции можно применять различные материалы — рубероид, толь кровельную (в один — два слоя). Они наклеиваются по горячей битумной мастике. Синтетические гидроизоляторы и т.д. При сухих грунтах достаточно обмазать поверхность горячей мастикой, битумом (как правило, в 2 слоя).

Для продления срока службы, необходима гидроизоляция для подпорных стенок выполненных из дерева, кирпича, бутобетона, железобетона, бетона и металла.

Какие бывают почвы

В строительной классификации присутствуют несколько видов грунта:

  • Скальный. Категория представляет собой крепкие породы, которые отличаются прочностью и низким водопоглощением. Практически непригодны для строительства, так как залегают в виде массивов и на них трудно надежно закрепить объекты либо проложить магистрали. К скальным породам относятся: гранит, известняк и т. д.
  • Полускальный. Сцементированные породы, которые могут уплотняться. На участке с полускальными грунтами строительство должно учитывать особенность материала и подбирать технологии и стройматериалы для дальнейшего предотвращения уплотнения и просадки. Чаще всего категория представлена гипсом и алевролитом.
  • Песчаный. Непластичная почва, которая образовалась в результате разрушения скальных пород. В среднем гранулы песка могут иметь размеры. Каждая песчинка считается таковой при наличии размеров от 0,05 до 2 мм.
  • Крупнообломочный. Очень похож на классический песчаный грунт, но при этом размер гранул будет превышать отметку в 2 мм. В составе почвы данного вида присутствует более 50% крупных обломков, благодаря чему почвосмесь имеет неоднородный состав.
  • Глинистый. Глинистая почва представляет собой супермелкую фракцию, размер частиц которой составляет 0,005 мм. Изначально это скальная порода, которая была существенно деформирована и разрушена за длительный период времени.

Глинистые и песчаные грунты преобладают на территории Российской Федерации. Строительство может производиться на различных почвосмесях, но при этом важно учитывать свойства грунтов для выбора наиболее оптимальных стройматериалов.

Определение сыпучести

Сыпучесть определяется как время, в течение которого определенная масса вещества проходит (протекает) через отверстие определенного размера.

Оборудование

В зависимости от сыпучести испытуемых материалов используют воронки различных конструкций:

– без выходного ствола (типа «бункер», рис. 1), с различными размерами внутреннего угла и диаметрами выходных отверстий;

– с выходным стволом (рис. 2).

Воронка поддерживается в вертикальном положении при помощи специального устройства.

Вся конструкция должна быть защищена от вибраций.

Методика

В сухую воронку с закрытым выходным отверстием помещают без уплотнения навеску испытуемого материала, взятую с точностью ±0,5 %. Количество испытуемого материала зависит от его насыпного объема и от используемого оборудования, но должно занимать не менее 80-90 % от объема воронки.

Открывают выходное отверстие воронки и определяют время, за которое через отверстие пройдет весь образец. Проводят не менее 3 определений.

Если при использовании оборудования, представленного на рис. 1, скорость высыпания 100 г порошка через насадку 1 менее 25 с, рекомендуется использовать воронку, представленную на рис. 2.

Если при использовании оборудования, представленного на рис. 1, навеска испытуемого материала неравномерно высыпается из воронки с насадкой 1, последовательно определяют сыпучесть, используя воронку с насадкой 2 или 3.

Рис. 1 – Воронка без выходного ствола (бункер) со сменной насадкой

Насадку изготавливают из нержавеющей кислотоупорной стали (V4A, CrNi). Размеры указаны в мм

Рис. 2 – Воронка с выходным стволом

Размеры указаны в мм

В табл. 1 представлены типовые размеры диаметров выходных отверстий сменных насадок.

Таблица 1 – Типовые размеры диаметров выходных отверстий сменных насадок

НасадкаДиаметр (d) выходного отверстия, мм
110 ± 0,01
215 ± 0,01
325 ± 0,01

Представление результатов

Сыпучесть выражают в секундах с точностью до 0,1 с, отнесенных к 100 г образца, с указанием типа использованного оборудования, номера насадки.

На результаты могут влиять условия хранения испытуемого материала.

Результаты могут быть представлены следующим образом:

а) как вычисленное среднее значение сыпучести при условии, что ни один из результатов не отклоняется от среднего значения более чем на 10 %;

б) в виде диапазона значений, если отдельные результаты отклоняются от среднего значения более чем на 10 %;

в) в виде графика зависимости массы испытуемого порошка от времени истечения.

Определение угла естественного откоса

Угол естественного откоса – это постоянный, трехмерный угол (относительно горизонтальной поверхности), сформированный конусообразной пирамидкой материала, полученной в определенных условиях эксперимента.

Методика

Определение угла откоса проводят по методике определения сыпучести с использованием того же оборудования в тех же условиях.

Истечение порошка из отверстия воронки производят на ровную горизонтальную поверхность. Диаметр основания (базы) конуса порошка может быть фиксированным или может меняться в процессе образования конуса.

Измерение значения угла естественного откоса проводят не менее чем в 3 повторностях при помощи угломера в 3 плоскостях и выражают в угловых градусах.

При проведении испытания следует учитывать, что:

– условия эксперимента должны обеспечивать формирование симметричного конуса порошка;

– вершина формирующегося конуса может деформироваться под воздействием падающих частиц порошка.

Эти внешние воздействия должны быть устранены любым приемлемым способом.

Кроме того, материал основы (базы), на которой формируется конус, может влиять на величину угла откоса.

В табл. 2 представлено примерное соотношение степени сыпучести порошков и угла естественного откоса, измеренного в условиях фиксированного диаметра основания конуса.

Таблица 2 – Степень сыпучести порошков и соответствующий угол естественного откоса

Степень сыпучестиУгол естественного откоса, градус
Очень хорошая25 – 30
Хорошая31 – 35
Удовлетворительная36 – 45
Неудовлетворительная (требуется дополнительное перемешивание или вибрация)46 – 55
Плохая56–65
Очень плохаяболее 66

Представление результатов

Угол естественного откоса выражают в градусах, как вычисленное среднее значение, с указанием типа использованного оборудования, номера насадки, условий эксперимента (диаметр основания конуса, если он фиксированный, материала основы (базы), на которой формируется конус).

Определение насыпного объема

Испытание позволяет определить при заданных условиях насыпные объемы до и после уплотнения, способность к уплотнению, а также насыпную плотность отдельных материалов (например, порошков, гранул).

Оборудование

Прибор (рис. 3) состоит из следующих частей:

– встряхивающее устройство, обеспечивающее 250 ± 15 соскоков цилиндра в 1 мин с высоты 3 ± 0,2 мм;

– подставка для градуированного цилиндра, снабженная держателем, имеющая массу 450 ± 5 г;

– градуированный цилиндр вместимостью 250 мл (цена деления – 2 мл; масса цилиндра 220 ± 40 г).

Допускается использование других приборов подобного принципа действия.

Методика. В сухой цилиндр помещают без уплотнения навеску испытуемого материала, имеющего насыпной объем в диапазоне от 50 до 250 мл. Аккуратно закрепляют цилиндр на подставке и фиксируют насыпной объем до уплотнения (V) с точностью до ближайшего деления. Производят 10, 500 и 1250 соскоков цилиндра и фиксируют объемы V10, V500, V1250 с точностью до ближайшего деления. Если разность между V500 и V1250 превышает 2 мл, производят еще 1250 соскоков цилиндра.

Рис. 3 – Прибор для определения насыпного объема

Представление результатов. По полученным результатам можно вычислить следующие параметры:

  1. Насыпной объем:
  1. Способность порошка к уплотнению:
  1. Насыпная плотность:

Полученные результаты можно использовать для вычисления коэффициента прессуемости по формуле:

где V – начальный объем порошка;

V1 – объем порошка после уплотнения.

6. ОБРАБОТКА РЕЗУЛЬТАТОВ

Угол естественного откоса ( ) в градусах вычисляют по формуле

,

где — высота насыпного конуса глинозема, т.е. расстояние между опорной плитой и носком воронки;

— средняя арифметическая длина четырех пересекающихся линий, мм;

— внутренний диаметр отверстия хвостовика воронки, мм.

При использовании установки, описанной в разд.4, формула приобретает вид

.

Среднее арифметическое результатов трех определений не должно отличаться от значения каждого отдельно взятого определения более чем на ±2°.

голоса
Рейтинг статьи
Читать еще:  Молдинг для отделки откосов
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector