Magik-stroy.ru

Меджик Строй
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет несущей способности стены кирпич

Расчёт кирпичного простенка на косое внецентренное сжатие по нелинейной деформационной модели с подбором армирования

Исходные данные

Материал – кирпич керамический на ц.п. растворе. Марка кирпича М250, марка раствора М200. Расчётное сопротивление кладки сжатию R=36.7098 кгс/см 2 , Rt=0.815773 кгс/см 2 , Ru=2*R=2*36.7098=73.4196 кгс/см 2 , Rtu=2*Rt=2*0.815773=1.631546 кгс/см 2 . Размеры простенка b=100 см, h=51 см. Высота простенка l=450 см. По результатам определения внутренних усилий в сечении простенка возникают следующие усилия: N=150 т, изгибающие моменты Мх=1.378 т*м, Му=1.075 т*м, поперечные силы, Qx=-0.378 т, Qy=0.502 т;

Определение деформационных характеристик кладки

Модуль деформации неармированной кладки при сжатии E=α*Ru=1000*73.4196=73419.6 кгс/см 2 .

Относительные деформации кладки при сжатии ε=R/E=36.7098/73419.6=0.0005

Относительные деформации для нелинейных расчётов

Определение предельных деформаций при сжатии

Модуль деформации неармированной кладки при растяжении Et=α*Rtu=1000*1.631546=1631.546 кгс/см 2 .

Относительные деформации кладки при растяжении εt=R/E=0.815773/1631.546=0.0005

Относительные деформации для нелинейных расчётов

Определение предельных деформаций при растяжении

Расчёт на косое внецентренное сжатие

Определение площади сжатой части сечения Ас, расчётом в конструкторе сечений

По результатам расчёта получаем, что всё сечение сжато, следовательно: Ac=А=b*h=100*51=5100 см 2

По п.7.7 Расчет внецентренно сжатых неармированных элементов каменных конструкций следует производить по формуле

Несущая способность простенка при центральном сжатии:

Высота простенка и размеры поперечного сечения такие же, как при проверке неармированной кладки.

N=150 т>φ1h*mg*R*A=0.90554*1*22.432828*5100=103.600498 т — условие не выполняется, требуется сетчатое армирование.

Принимаем армирование сетками из арматуры В500, Rs=4435.77 кгс/см 2 , диаметр стержней 4 мм, шаг стержней 50×50 мм. Сетки устанавливаются через три ряда, при высоте ряда кладки 100 мм, шаг сеток будет равен 30 см. Определим расчётное сопротивление армированной кладки:

Проверка условия Rsk≤2*R

Определим упругую характеристику кладки с сетчатым армированием:

Расчёт несущей способности армированной кладки. Для l=450 см, iy=0.289*51=14.739 см, по таблице 19, при λ=l/iy=450/14.739=30.531, φ=0.84828691058.

αnαiαi+1
750601.43455291994500
λn280.90.870286910580.85
λi30.5310.8780.848286910580.828
λn+1350.840.79

Подставляя данные в формулу прочности простенка, получаем:

N=100 т>φy*mg*Rsk*A=0.84828691058*1*37.298868*5100=161.36472166964 т

Условие прочности выполняется. Коэффициент запаса 161.36472166964/150=1.07576481113

Характеристики материалов каменных конструкций, заданных для расчёта в программе

Расчёт в ПК ЛИРА САПР, выполняется по СП 15.13330.2012 по нелинейной деформационной модели кладки.

Расход строительных материалов и их вес(а):

  • бетон марки М 150 для ленточного ЖБ монолитного фундамента. Объем фундамента (предварительный) определяем расчетом: ширина 0,4 м х высота 1,0 м х длина 53,5 м = 21,4 м 3 . Удельный вес железобетона – 2500 кг/м 3 или 2,5 т/м 3 (по данным СНиП II-3-79). Считаем вес фундамента: объем 21,4 м 3 х 2500 кг/м 3 = 53500 кг или 53,5 т (предварительные данные);
  • кирпич керамический полнотелый одинарный М 125 (ГОСТ 530-2007) для наружных стен, толщиной в 2 кирпича. Длина периметра стен составит 11,9 +11,9 + 8,9 + 8,9 = 41,6 м. Высота стен – 2,6 м . За вычетом окон и дверей объем стен составит 41,6 х 2,6 х 0,5 = 44,7 м 3 . На 1 м 3 , сплошной стены необходимо 394 штук одинарного кирпича и раствора 0,240 м 3 . Всего необходимого кирпича 44,7 х 394 =17612 штук. При весе 1 кирпича 3,4 кг, вес наружных стен составит 17612 х 3,4 = 59880 кг . Или 59,9 т.

На 1 м 3 кладки необходимо цементного раствора — 0,240 м 3 . Удельный вес цементно-песчаного раствора 1,8 т/м 3 (по данным СНиП II-3-79). На наружные стены потребуется 44,7 х 0,240 =10,7 м 3 раствора. Всего вес раствора на наружные стены составит 10,7 х 1,8 = 19,3 т.

Общий вес наружных стен составит 59,9 + 19,3 = 79,2 т;

  • кирпич керамический полнотелый одинарный М 125 (ГОСТ 530-2007) для цоколя, толщиной в 2 кирпича, высотой в 1 ряд. При периметре фундамента 41,6 м объем цоколя составит 41,6 х 0,5 х 0,130 = 2,7 м 3 . На 1 м 3 сплошной стены необходимо 394 штуки кирпича и 0,240 м 3 раствора. Вес цоколя составит: по кирпичу – 2,7 х 394 =1064 шт. При весе 1 кирпича 3,4 кг это будет 3617 кг или 3,6 т. Цементно-песчаного раствора на 2,7 м 3 кладки необходимо 0,65 м 3 . Это составит 0,65 х 1,8 = 1,17 т раствора. Общий вес цоколя 3,6 + 1,17 = 4,77 т;
  • кирпич керамический пустотелый одинарный М 100 (ГОСТ 530 – 95) для внутренних стен. Общая длина внутренних стен составляет 39,2 м. При сплошной кладке в пол кирпича, с вычетом объема внутренних дверей, получаем объем внутренних стен 39,2 х 0,120 х 2,6 = 12,2 м 3 . На 1 м 3 сплошной стены необходимо 420 штук кирпича и 0,189 м 3 цементно-песчаного раствора. С вычетом объема внутренних дверей необходимое количество кирпичей составит 3800 штук и цементно-песчаного раствора 1,7 м 3 . Определяем вес внутренних перегородок. Вес кирпичной кладки 3800 х 2,5 кг (вес 1 кирпича) = 9500 кг , или 9,5 т. Вес раствора 1,7 х 1,8 = 3.06 т. Общий вес составит 9,5 + 3,06 = 12,56 т;
  • металл. Сталь на металлические двери: 1 — высотой 2,0 м, шириной 0,8 м с металлической коробкой; 2 — двойная высотой 2,0 м, шириной 1,6 м с металлической коробкой. По сертификату производителя их общий вес составляет 290 кг или 0,29 т;
  • лесоматериалы (хвойных пород) для сооружения: внутренних деревянных дверей, обналички; короба окон из бруса; пола из бруса и половой доски; стропил крыши из бруса, доски, горбыля; фронтона крыши из досок. Обмер всех составных элементов этих конструкций (по выполненным эскизам) составил объем в сумме 19,5 м 3 . Удельный вес хвойных пород древесины – 500 кг/м 3 (по данным СНиП II-3-79). Определяем вес всего использованного лесоматериала — 19,5 х 500 = 9750 кг или 9,75 т;
  • плиты перекрытий из газобетона. Для потолочного и цокольного перекрытия. Предполагается применить плиты ПП 60.2,5-4,5 (ГОСТ 19570-74). Удельный вес плит 0,63 т/м 3 . Общая площадь перекрытий составляет 8,9 х 11,9 = 106,0 м 2 х 2 = 211,8 м 2 . При стандартной толщине перекрытия 0,22 м объем составляет 211,8 х 0,22 = 46,6 м 3 . Общий вес перекрытий будет составлять 46,6 х 0,63 = 29,36 т;
  • черепица керамическая (ГОСТ 1808—71 ) для покрытия крыши. Вес 1 м 2 — 46,5 кг. Общий вес черепицы 175,8 х 46,5 кг = 8174 кг или 8,2 т;
  • утеплитель для пола. Необходимо утеплить пол площадью 8,9 х 11,9 = 106 м 2 . Для утепления пола применим маты минераловатные с удельным весом 35 кг/м 3 , толщиной 0,1 м. При этом вес утепления составит — 0,371 т;
  • утеплитель для внешних стен. Периметр стен 41,6 м, высота 2,6 м. Общая площадь утепления стен 41,6 х 2,6 = 108,16 м 2 . Для утепления стен применим ЭППС толщиной 0,1 м и плотностью 35 кг/м 3 . Вес утеплителя 108,16 х 0,1 х 35 = 0,379 т;
  • утеплитель для крыши. Крышу будем утеплять по чердачному перекрытию минеральной ватой или ЭППС толщиной 0,2 м и плотностью 35 кг/м 3 . Площадь утепления 106 м 2 . Вес утеплителя 106 х 0,2 х 35 = 0,742 т;
  • гидроизоляция для фундамента и крыши. Для фундамента применяем «Акваизол СБС» (ТУ 30510965-001), в два слоя. Удельный вес материала — 2,5 кг/м 2 . Длина фундамента 30 м. При укладки «Акваизола» в один слой шириной 0,5 м нам необходимо 53,5 х 0,4 = 21,4 м 2 материала, а при двух слоях 21,4 х 2 = 42,8 м 2 . Вес гидроизоляции составит 42,8 х 2,5 = 107 кг или 0,1 т. Для крыши применим гидроизоляционную мембрану с плотностью 940 кг/м 3 . Для площади крыши 175,8 м 2 вес мембраны 175,8 х 940 х 0,0006 = 99,15 кг или 0,099 т. Общий вес гидроизоляции составит 0,199 т;
  • остекление. 10 окон. Толщина стекол 4 мм. Общий вес — 980 кг или 0,98 т;
  • штукатурка, тонкослойная, цементно-песчаная смесь для фасада и внутренних перегородок — 0,62 т.

Пример расчета

Вычисления включают в себя следующие шаги:

  • подбор геометрических параметров;
  • расчет бетона на фундамент;
  • и расчет армирования ленточного фундамента.

Пример расчета геометрии

Для расчета фундамента возьмем двухэтажный кирпичный дом с наружной стеной 510 мм, суммарная высота наружной стены —4,5 м. Внутренних стен нет. Он расположен в г.Москва, грунт на участке — среднезернистый песок (R = 5 кг/см2). Перекрытия (2 шт., над подвалом и над первым этажом) из плит ПК, перегородки гипсокартонные высотой 2,7 м и общей протяженностью 20 м. Высота этажа — 3 м, размеры в плане — 6х6 м. Вода на участке залегает низко, поэтому принято решение строить заглубленный фундамент высотой 2 м. Крыша четырехскатная с покрытием из металла. Наклон ската — 30°.

Пример расчета начинается со сбора нагрузок в форме таблицы.

Тип нагруженияВычисления
Фундамент монолитный (предварительно шириной 0,6 м по периметру здания, равному 36 м)36м*0,6м*2м*2500кг/м3*1,3 = 140400 кг
Стена из кирпича6м*4,5м*4шт.*920 кг/м2*1,3 = 129168 кг
Гипсокартонные перегородки20м*2,7м*30кг/м2*1,1 = 1782 кг
Перекрытия2шт*6м*6м*625 кг/м2*1,2 = 54000 кг
Крыша6м*6м*60кг/м2*1,05 = 2268 кг 2268 кг/cos30° = 2607 кг
Полезное2 перекрытия*36м2*150кг/м2*1,2 = 12960 кг
Снеговое36м2*180кг/м2*1,4 = 9072 кг
Сумма349 989 кг
Читать еще:  Ремонт поверхности кирпича стен

В = Р/(L*R) = 349989кг/ (36000см*5кг/см2) = 1,94м. Конструкция рассчитана.

Рассчитанный размер ширины округляем до 2 м. Для ширины по всей высоте это много, достаточно будет 50 см под стены 51 см. Свес 1 см допускается (максимальный составляет 4 см в одну сторону). Ширина подошвы больше той, которая использована в расчете, но по всей высоте размер меньше первоначального. По этой причине нет необходимости переделывать вычисления с новой массой подземной конструкции.

Подсчет бетона

Перед покупкой смеси должна быть вычислена ее необходимая кубатура. Для этого потребуется просто найти объем ленты. К количеству бетона для ленточного фундамента рекомендуется прибавить запас в 5—7%.

Армирование

Арматура для ленточного фундамента нужна, чтобы скомпенсировать изгибающие воздействия. Какую арматуру использовать правильно для армирования? Здесь все зависит от высоты подземной части и ее длины. Чтобы понять, какая арматура нужна в качестве рабочей, делают простые вычисления. Расчет количества арматуры выполняется так, чтобы ее суммарное сечение составляло 0,1% от сечения бетонной конструкции. При этом есть минимальные конструктивные требования:

  • Какая арматура нужна для конструкции с длиной стороны менее 3 м? Ответом будет сечение 10 мм.
  • При длине стороны более 3 м потребуется 12-ти миллиметровая арматура для фундамента.


Армирование фундамента компенсирует изгибающие воздействия
Расчет выполняют приблизительно. Рассчитать арматуру более точно сможет только профессионал. Шаг рабочих прутов подбирают так, чтобы они были распределены равномерно. Желательно использовать одинаковый шаг, располагая элементы в нижней части ленты, наверху и посередине.

Дальше требуется рассчитать количество для хомутов. Они соединяют рабочие детали каркаса между собой. Раскладка арматуры в ленточном фундаменте предполагает наличие вертикальных и горизонтальных хомутов. Их изготавливают из стержней диаметром 8 мм. Шаг назначают в пределах 20—30 см. В углах шаг уменьшают в два раза.

Вычисление количества арматуры для ленточного фундамента помогает сэкономить время и деньги. Зная точное количество арматуры для каждого диаметра и ее шаг можно легко выполнить усиление ленты и закупить материалы.

Толщина кирпича, какой кирпич стоит выбрать для строительства

В современном кирпичном строительстве выделяют одинарный, полуторный и двойной кирпич. Размеры одинарного обычного кирпича составляют 250х12х65 мм, он был введен в обиход еще в 1-й половине прошлого века (в 1925 году этот типоразмер был закреплен в нормативной документации). Немного позже стали использоваться полуторные и двойные кирпичи, их размер составляет 250х120х88 и 250х120х138. С точки зрения затрат гораздо эффективнее для наружных стен использовать двойной или полуторный кирпич.

Например, при кладке в 2,5 кирпича оптимальным будет вариант использования двойных кирпичей для кладки стены в 2,0 кирпича и облицовочного кирпича – для кладки оставшихся 0,5 кирпича. Если для того же объема строительства использовать обычный одинарный кирпич, то затраты будут на 25 – 35% выше.

Еще одним важным фактором, влияющим на выбор типа кирпича, является его теплопроводность. По этому параметру кирпич проигрывает многим строительным материалам, например, дереву.

Теплопроводность обычного цельного кирпича составляет порядка 0,6 – 0,7 Вт/м°С, этот показатель можно уменьшить в 2,5 – 3 раза за счет использования пустотелого кирпича. В этом случае кирпич намного хуже проводит тепло, но в то же время снижается его прочность. Поэтому использование пустотелого кирпича для несущих стен возможно не во всех случаях.

Кроме этого, пустотелый кирпич не рекомендуется использовать для строительства фундамента, цокольных и подвальных этажей. Вообще не рекомендуется контакт пустотелого кирпича с водой.

Основные расчетные зависимости

Расчет на центральное и внецентренное сжатие, местное сжатие; расчет на растяжение, срез и изгиб;
расчет по образованию и раскрытию трещин

Расчеты каменной кладки имеют большое значение при проектировании и строительстве гаражей, ведь подавляющее большинство стеновых конструкций для гаражного строительства — это кладка из блоков или кирпича.

Предварим расчеты несколькими замечаниями:

1) Будем рассматривать элементы прямоугольного сечения (стены, столбы) толщиной не менее 380 мм (полтора кирпича). Кладку будем выполнять из полнотелого керамического кирпича на цементном растворе.

При расчете элементов иного сечения (например, круглого, таврового) вид расчетных зависимостей не меняется, однако чуть усложняется вычисление геометрических характеристик сечений.

Для кладки, выполненной из иных материалов (например, пустотелого кирпича, керамических блоков и т.п.) в расчетные зависимости и расчетные сопротивления вводятся коэффициенты, уточняющие ее поведение.

2) В сечении элемента выделяют высоту (h) и ширину (b). За высоту принимают сторону сечения, расположенную параллельно плоскости действия изгибающего момента; соответственно, перпендикулярная ей сторона принимается за ширину. При центральном сжатии за высоту сечения принимают: любую из сторон – при квадратном сечении, меньшую из сторон – при прямоугольном сечении.

  1. Расчет кладки при центральном сжатии

К расчету центрально-сжатого элемента:
а – короткий элемент; б – гибкий элемент; в – расчетная схема

Работа элементов каменных конструкций при центральном сжатии встречается относительно редко. К подобным случаям можно отнести внутренние стены и столбы, при условии, что эксцентриситет приложения равнодействующей нагрузок, приходящих на данные элементы, равен нулю (то есть равнодействующая нагрузок проходит через центр тяжести сечения). Однако и при несоблюдении данного условия многие конструкции можно условно рассматривать как центрально-сжатые (например, тяжело нагруженные стены и столбы нижних этажей; элементы, на которые нагрузка приходит через центрирующие прокладки и т.п.).

Во всех подобных случаях можно считать, что сжимающие напряжения распределены неравномерно только в сечениях, непосредственно примыкающих к площадке передачи давления; ниже распределение приобретает равномерный характер, что и принимается в расчетах.

Расчет по несущей способности элементов, работающих на центральное сжатие, производят из условия равновесия внешних и внутренних сил, действующих в наиболее опасном (расчетном) сечении элемента (bxh):

N ≤ Nu
где N –
продольная сила, действующая в расчетном сечении элемента, кН;
Nu –
минимальная несущая способность расчетного сечения элемента, кН.

Минимальная несущая способность элемента при центральном сжатии

Далее подробнее рассмотрим соотношение

Как известно из курса «Сопротивление материалов» гибкость элемента определяется как отношение расчетной длины элемента к радиусу инерции его поперечного сечения:

Далее, по соответствующим таблицам от гибкости переходят к коэффициенту продольного изгиба, всесторонне оценивающиму эффекты, вызванные потерей устойчивости элемента.
Перепишем выражение для гибкости следующим образом:

Рационально при определении гибкости элемента прямоугольного сечения вычислять не гибкость

При этом таблицы, связывающие гибкость с коэффициентом продольного изгиба дополнить соотношением, что и сделано в Таблице 19 [1].

Стоит отметить, что в большинстве расчетов расчетная схема элементов может быть приведена к элементу, имеющему шарнирное опирание на неподвижные опоры, для которого

  1. Особенности работы и расчет кладки при внецентренном сжатии

Работа элементов каменных конструкций при внецентренном сжатии встречается наиболее часто. К подобным случаям можно отнести наружные столбы и стены (в том числе простенки), а также внутренние столбы и стены, при условии, что эксцентриситет приложения равнодействующей нагрузок, приходящих на данные элементы, отличен от нуля. Внецентренное сжатие может быть вызвано совместным действием вертикальной и горизонтальной нагрузками (например, боковым давлением грунта на стену подвала или действием ветрового давления на вышележащие стены).

Как показывают опыты, внецентренно-сжатые каменные элементы разрушаются при значительно больших нагрузках, чем это получается при расчете их по формулам сопротивления материалов (в среднем в 1,5-2 раза). Данное обстоятельство объясняется тем, что кладка является упругопластическим материалом, в котором напряжения по сечению распределяются не по линейному закону, как у упругих материалов

Виды эпюр напряжений при внецентренном сжатии кладки:
а – все сечение сжато; б – в сечении появились растягивающие напряжения; в – в сечении появилась трещина; 1 – центр тяжести сечения; 2 – трещина; t – глубина трещины

Распределение напряжений зависит от величины эксцентриситета e0: при небольших эксцентриситетах поперечное сечение элемента полностью сжато, но неравномерно; с увеличением эксцентриситета в сечении появляются не только сжимающие, но и растягивающие напряжения.

Расчетная схема для внецентренно сжатого элемента по несущей способности: 1 – центр тяжести всего сечения; 2 – центр тяжести сжатой зоны сечения

При расчете внецентренно сжатых элементов пользуются следующими допущениями:

  • растянутая зона элемента полностью исключается из работы;
  • напряжения в сжатой зоне кладки принимаются равномерно распределенными (прямоугольная эпюра сжимающих напряжений взамен криволинейной);
  • неравномерность распределения напряжений по сечению учитывается коэффициентом, который зависит от эксцентриситета e0:

тем самым учитывая, что при внецентренном сжатии менее загруженная часть кладки сдерживает поперечные деформации более загруженной, что несколько повышает ее несущую способность.

Геометрические параметры сечения сжатой части определяют из условия, что ее центр тяжести совпадает с точкой приложения продольной силы (условие равновесия). Тогда, чисто геометрически:

Читать еще:  Объем одного стенового кирпича

Расчет по несущей способности элементов, работающих на внецентренное сжатие, производят из условия равновесия внешних и внутренних сил, действующих в наиболее опасном (расчетном) сечении элемента (bxh):

N ≤ Nu
где N –
продольная сила, действующая в расчетном сечении элемента с эксцентриситетом e0, кН;
Nu –
минимальная несущая способность расчетного сечения элемента, кН.
Минимальная несущая способность элемента при внецентренном сжатии

Особенности работы и расчет кладки при местном сжатии

Под местным сжатием понимается работа кладки, когда нагрузка передается не по всему поперечному сечению равномерно, а через некоторую его часть Aс, называемую площадью смятия.

Наиболее часто необходимость в расчете на местное сжатие встречается при передаче нагрузок на каменные элементы от перекрытий/покрытий, конструкций лестниц и т.п. через балки, прогоны или фермы. В этом случае отношение грузовой площади, с которой собирается нагрузка, к площади смятия существенна, и, соответственно, существенна интенсивность напряжений сжатия под площадкой смятия.

Также необходимость в расчете на местное сжатие возникает для кладки под плитами перекрытий/покрытий, перемычками, а также в ряде других случаев, например, при опирании на кладку конструкций, выполненных из более прочных материалов.

Прочность кладки непосредственно под площадкой смятия оказывается выше прочности, если бы нагрузка передавалась через всю площадь равномерно. Объясняется это явление сдерживанием поперечных деформаций, создаваемой кладкой, расположенной вокруг площадки смятия. То есть создается так называемый эффект обоймы и кладка под площадкой смятия, работая в продольном направлении на сжатие, в поперечном направлении также испытывает сжимающие усилия. Причем прочность тем выше, чем меньше отношение площади смятия к площади всего сечения (больший эффект обоймы).

Таким образом, в работу на местное сжатие включается кладка,
расположенная под так называемой расчетной площадью A.

Расчетное сопротивление кладки при местном сжатии

Естественным образом прочность кладки под площадкой смятия
должна зависеть от прочности кладки без учета эффекта обоймы, а также от местоположения нагрузки, что определяет расчетную площадь (например, при приложении нагрузки на край стены, уже нельзя ожидать всестороннего эффекта обоймы).

Расчетное сопротивление кладки при местном сжатии Rс определяется по формуле Баушингера, которая учитывает вышеотмеченное:

Расчет кладки на местное сжатие

Расчет кладки на местное сжатие производят из условия равновесия
внешних и внутренних сил.

Расчет кладки на изгиб, растяжение и срез, а также расчет по образованию и раскрытию трещин

Расчет кладки на изгиб, растяжение и срез производят по элементарным формулам сопротивления материалов. Что же касается сложности поведения кладки при ее работе, неодинаковость сопротивлений отмеченным воздействиям, разность сопротивления определенному воздействию по перевязанному и неперевязанному шву, то все это учтено в расчетных сопротивлениях, которые получены из испытаний кладки.

Расчет кладки на изгиб

На изгиб работает, кладка, которая опирается на конструкции, имеющие конечную жесткость (например, рандбалки, перемычки). Расчет изгибаемых элементов следует производить по формуле

Стоит отметить, что проектирование элементов каменных конструкций, работающих на изгиб по неперевязанному сечению, не допускается.

Расчет кладки на осевое растяжение

На осевое растяжение работают стенки круглых в плане резервуаров, силосов и других емкостей. Расчет элементов каменных конструкций на прочность при осевом растяжении следует производить по формуле

Стоит отметить, что проектирование элементов каменных конструкций, работающих на осевое растяжение по неперевязанному сечению, не допускается.

Расчет кладки на срез

Срез возникает в сечениях элементов, воспринимающих распор сводчатых конструкций, а также на границе стен (пилястр со стеной) при их разной нагруженности. Расчет кладки на срез по горизонтальным неперевязанным швам и перевязанным швам кладки следует производить по формуле Кулона:

Расчет кладки на срез по перевязанному сечению (по кирпичу или камню) следует производить без учета обжатия (2-е слагаемое формулы).

Расчет по образованию и раскрытию трещин

В ряде случаев, при проектировании каменных конструкций выполняют расчет по образованию и раскрытию трещин (швов кладки).

1 – центр тяжести сечения; 2 – трещина; t – глубина трещины

Наиболее часто этот расчет выполняется для внецентренно сжатых элементов при существенном эксцентриситете: е0 > 0,7у, где y – половина высоты сечения.

При расчете принимается линейная эпюра напряжений внецентренного сжатия как для упругого тела. Расчет производится по условному краевому напряжению растяжения, которое характеризует величину раскрытия трещин в растянутой зоне. Краевое напряжение вычисляют по известной формуле сопротивления материалов:

После преобразования данной формулы получим:

Остальные обозначения величин те же, что и при расчете на внецентренное сжатие.

Пример расчета

Вычисления включают в себя следующие шаги:

  • подбор геометрических параметров;
  • расчет бетона на фундамент;
  • и расчет армирования ленточного фундамента.

Пример расчета геометрии

Для расчета фундамента возьмем двухэтажный кирпичный дом с наружной стеной 510 мм, суммарная высота наружной стены —4,5 м. Внутренних стен нет. Он расположен в г.Москва, грунт на участке — среднезернистый песок (R = 5 кг/см2). Перекрытия (2 шт., над подвалом и над первым этажом) из плит ПК, перегородки гипсокартонные высотой 2,7 м и общей протяженностью 20 м. Высота этажа — 3 м, размеры в плане — 6х6 м. Вода на участке залегает низко, поэтому принято решение строить заглубленный фундамент высотой 2 м. Крыша четырехскатная с покрытием из металла. Наклон ската — 30°.

Пример расчета начинается со сбора нагрузок в форме таблицы.

Тип нагруженияВычисления
Фундамент монолитный (предварительно шириной 0,6 м по периметру здания, равному 36 м)36м*0,6м*2м*2500кг/м3*1,3 = 140400 кг
Стена из кирпича6м*4,5м*4шт.*920 кг/м2*1,3 = 129168 кг
Гипсокартонные перегородки20м*2,7м*30кг/м2*1,1 = 1782 кг
Перекрытия2шт*6м*6м*625 кг/м2*1,2 = 54000 кг
Крыша6м*6м*60кг/м2*1,05 = 2268 кг
2268 кг/cos30° = 2607 кг
Полезное2 перекрытия*36м2*150кг/м2*1,2 = 12960 кг
Снеговое36м2*180кг/м2*1,4 = 9072 кг
Сумма349 989 кг

В = Р/(L*R) = 349989кг/ (36000см*5кг/см2) = 1,94м. Конструкция рассчитана.

Рассчитанный размер ширины округляем до 2 м. Для ширины по всей высоте это много, достаточно будет 50 см под стены 51 см. Свес 1 см допускается (максимальный составляет 4 см в одну сторону). Ширина подошвы больше той, которая использована в расчете, но по всей высоте размер меньше первоначального. По этой причине нет необходимости переделывать вычисления с новой массой подземной конструкции.

Подсчет бетона

Перед покупкой смеси должна быть вычислена ее необходимая кубатура. Для этого потребуется просто найти объем ленты. К количеству бетона для ленточного фундамента рекомендуется прибавить запас в 5—7%.

Армирование

Арматура для ленточного фундамента нужна, чтобы скомпенсировать изгибающие воздействия. Какую арматуру использовать правильно для армирования? Здесь все зависит от высоты подземной части и ее длины. Чтобы понять, какая арматура нужна в качестве рабочей, делают простые вычисления. Расчет количества арматуры выполняется так, чтобы ее суммарное сечение составляло 0,1% от сечения бетонной конструкции. При этом есть минимальные конструктивные требования:

  • Какая арматура нужна для конструкции с длиной стороны менее 3 м? Ответом будет сечение 10 мм.
  • При длине стороны более 3 м потребуется 12-ти миллиметровая арматура для фундамента.

Армирование фундамента компенсирует изгибающие воздействия

Расчет выполняют приблизительно. Рассчитать арматуру более точно сможет только профессионал. Шаг рабочих прутов подбирают так, чтобы они были распределены равномерно. Желательно использовать одинаковый шаг, располагая элементы в нижней части ленты, наверху и посередине.

Дальше требуется рассчитать количество для хомутов. Они соединяют рабочие детали каркаса между собой. Раскладка арматуры в ленточном фундаменте предполагает наличие вертикальных и горизонтальных хомутов. Их изготавливают из стержней диаметром 8 мм. Шаг назначают в пределах 20—30 см. В углах шаг уменьшают в два раза.

Вычисление количества арматуры для ленточного фундамента помогает сэкономить время и деньги. Зная точное количество арматуры для каждого диаметра и ее шаг можно легко выполнить усиление ленты и закупить материалы.

Коровин Сергей Дмитриевич

Магистр архитектуры, закончил Самарский Государственный Архитектурно-Строительный Университет. 11 лет опыта в сфере проектирования и строительства.

  • Как обычная пластиковая бутылка может справиться с засором в ванной или туалете?
  • Как рассчитать, сколько кубов бетона нужно на фундамент?

—>

Порядок расчета

При проведении подготовительных конструкторских работ необходимо определиться со следующими значениями:

  1. глубина заложения фундамента;
  2. ширина подошвы (по расчету);
  3. ширина ленты.

Ширина подошвы и ленты будут различаться при строительстве дома на фундаменте т-образного типа. При применении прямоугольного сечения опорной конструкции, эти значения равны. Т-образные ленты применяются для возведения массивных зданий из кирпича, широкая подошва фундамента снижает давление на единицу площади от здания на грунт. Если дом строится по каркасной технологии или из бруса, достаточно прямоугольного фундамента. Расчет подошвы для монолитного и сборного фундамента не отличаются.

Чтобы найти или рассчитать нужные значения, работы проводятся в несколько этапов:

  1. изучение характеристик грунта;
  2. назначение глубины заложения;
  3. сбор нагрузок;
  4. расчет по несущей способности.

Каждый из этих этапов имеет свои особенности, поэтому требует отдельного рассмотрения.

Геологические условия участка

Для частного дома проводить дорогостоящие геологические исследования нецелесообразно. Все, что необходимо узнать это:

  • тип грунта;
  • уровень нахождения грунтовых вод;
  • наличие линз слабого грунта.

Это можно определить двумя способами:

  • отрывка шурфов;
  • бурение.

Исследование почвы необходимо проводить на 50 см ниже предполагаемой отметки ленточного фундамента, которая на данном этапе принимается в зависимости от наличия подвала и величины промерзания (подробнее в следующем пункте).

Шурфы представляют собой ямы прямоугольного сечения, земляные работы можно проводить с помощью обычной лопаты. Грунт анализируется по стенкам откопанного шурфа. Бурение в условиях самостоятельного возведения дома можно проводить ручным буром. Анализ проводят по почве на лопастях инструмента.

Необходимо выбрать несколько точек для исследования, все они располагаются под пятном застройки дома. Одну скважину или шурф делают в самой низкой точке участка. Чем больше точек для исследования взять, тем точнее будут результаты, но главное не переусердствовать.

Если грунтовые воды не найдены, можно принимать фундаменты глубокого заложения и обустраивать в доме подвальные помещения. Если УГВ располагается на глубине 1 м от поверхности земли и ниже, самым простым решением станет устройство мелкозаглубленных опор (50-60 см). Более сложным для выполнения вариантом будет устройство заглубленной ленты с дренажом и надежной гидроизоляцией подвала (снаружи и изнутри).

По типу найденных грунтов определяют их несущую способность, которая потребуется в дальнейшем расчете.

Тип грунтаНесущая способность, кг/см 2
Галечный с глиной4,5
Гравий4,0
Крупнозернистый песчаный6,0
Среднезернистый песчаный5,0
Мелкозернистый песчаный4,0
Пылеватый песчаный*2,0
Супеси и суглинки3,5
Глины6,0
Просадочные грунты*1,5
Насыпной уплотненный*1,5
Насыпной неуплотненный*1,0

* грунт не подходит в качестве основания. Требуется полная его замена на песок крупной или средней фракции. В данном случае лучше остановиться на применении свайного фундамента или монолитной плиты.

Назначение глубины заложения

Как уже говорилось ранее, отметка подошвы зависит от уровня грунтовых вод. Изучив характеристики основания и обозначив допустимые границы, рассматривают другие факторы.

При наличии подвала, отметку подошвы выбирают не менее чем на 20-30 см ниже пола по подвала. Промерзание почвы также влияет. Лучше опирать конструкции дома на незамерзающий слой почвы. Для различных регионов он отличается. Самые точные значения приведены в СП «Строительная климатология». Значения для некоторых городов приведены в таблице.

ГородПромерзание почвы, м
Москва1,4
Санкт-Петербург1,4
Ростов-на-Дону1,0
Волгоград1,2
Архангельск1,8
Нижний Новгород1,6
Уфа1,8
Екатеринбург1,9
Челябинск2,0
Омск2,2
Новосибирск,2,2
Воркута2,9
Иркутск2,3
Владивосток1,6

Сбор нагрузок

Нагрузки разделяют на два типа: временные и постоянные. Постоянные — масса конструкций здания, временные — людей, мебели, оборудования, снега.

Чтобы рассчитать все значения достаточно воспользоваться таблицей.

Тип нагрузкиВеличина
Кирпичные стены толщиной 510 мм920 кг/м 2
Кирпичные стены толщиной 640 мм1150 кг/м 2
Стены из бруса толщиной 150 мм120 кг/м 2
Стены из бруса толщиной 200 мм160 кг/м 2
Утепленные каркасные стены толщиной 150 мм30-50 кг/м 2
Гипсокартонные перегородки 80 мм без утеплителя27,2 кг/м 2
Гипсокартонные перегородки 80 мм с утеплителем для шумоизоляции33,4 кг/м 2
Железобетонное перекрытие сборными плитами толщиной 220 мм и цементно-песчаной стяжкой толщиной 30 мм625 кг/м 2
Деревянное перекрытие по балкам с утеплителем плотностью до 200 кг/м 3100-150 кг/м 2
Фундамент железобетонный2500 кг/м 3
Кровельный пирог в зависимости от типа покрытия, кг/м 2
Металлическая черепица40-60
Керамическая черепица80-120
Гибкая черепица50-70
Временные нагрузки
Полезная (мебель и оборудование)150 кг/м 2
СнегСм. в табл. 10.1 СП «Нагрузки и воздействия» в зависимости от климатического района

Каждое значение, перед тем как взять в расчет, требуется умножить на коэффициент надежности по нагрузке. Для металлических элементов он составляет 1,05, для деревянных — 1,1, для железобетонных заводского изготовления — 1,2, для железобетонных, изготавливаемых на стройплощадке — 1,3. Полезная нагрузка умножается на 1,2, а снеговая на 1,4. При уклоне кровли свыше 60 градусов нагрузку от снега в расчет принимают равной нулю.

Расчет ширины подошвы

Фундамент — это конструкция передающая нагрузку от дома на грунт, т.е. при расчете фундамента по несущей способности главным параметром является несущая способность грунта под ним. По сути расчет несущей способности сводится к расчету минимальной площади опирания фундамента на грунт, при которых его пространственные характеристики останутся в заданных пределах в течение всего времени эксплуатации здания, при заданной массе строения (считается из учета проекта). Варьируя ширину фундамента можно изменять удельное давление (давление на единицу площади кг/см²) здания на грунт. Т.к. периметр строения известен из проекта, нужно определить минимально возможную ширину ленточного фундамента.

Рассчитать фундамент можно по формуле:

где В — значение требуемой ширины подошвы фундамента, L — общая длина всей ленты по периметру дома и внутренних несущих стен, R — несущая способность грунта (по таблице выше), P — масса дома с учетом всех нагрузок, умноженных на коэффициенты запаса по несущей способности.

Пример расчета

Для более точного представления, приведем пример для двухэтажного дома из бруса размерами 6 на 6 м и высотой этажа 3 м. Наружные сены на втором этаже(мансардном) имеют высоту 1,5м. Кровля из битумной черепицы, фундамент ленточный мелкого заглубления (60 см). Пример предусматривает район строительства — г.Москва. Опирание выше глубины заложения обусловлено высоким УГВ, для защиты от сил морозного пучения предусмотрено утепление ленты фундамента пенопластом (в расчет не учитывается). Геологические исследования показали, что на выбранной глубине опирания находятся суглинки.

Рассчитать нагрузки можно в табличной форме.

НагрузкаВеличина, кг
Наружные стены из бруса толщиной 200 мм6 м (длина) * 4 шт * 4,5 м (высота) * 160 кг * 1,1 = 19000 кг
Внутренняя стена из бруса толщиной 150 мм6 м (длина) * 6 м (высота) * 120 кг * 1,1 = 4750 кг
Перегородки из гипсокартона без шумоизоляции20 м (длина) * 2,7 м (высота) * 27,2 кг * 1,2 = 1770 кг
Перекрытия по балкам толщиной 300 мм2 шт * 6 м (ширина) * 6 м (длина) * 150 кг * 1,1 = 11880 кг
Кровля6 м * 6 м * 70 кг * 1,2/соs45ᵒ(угол наклона кровли) = 4260 кг
Полезная нагрузка на перекрытия2 шт * 6 м * 6 м * 150 кг * 1,2 = 12960 кг
Снег6 м * 6 м * 180 кг * 1,4 = 9080 кг

Итого с учетом всех коэффициентов — 63700 кг.

В примере ленточный фундамент закладывается под наружные стены и под внутреннюю. Подбираем ширину в зависимости от толщины стен. Предварительно значение ширины равно 25 см. Высота цоколя равна 40 см, глубина заложения 60 см, общая высота фундамента -100 см.

Предварительная масса ленточного монолитного фундамента = (6 м * 4 шт + 6 м * 1 шт) * 1 м (высота) * 0,25 м (ширина) * 2500 кг * 1,2 (коэффициент надежности по нагрузке) = 18750 кг .

Общая нагрузка от дома — 82450 кг. Периметр фундамента L=5 шт * 600 см = 3000 см.

В = Р/(L) * R = 82450/(3000 см * 3,5 кг/см²) = 7,85 см.

Такое небольшое значение в примере получено из-за небольшого веса здания из бруса и достаточно высокой несущей способности ленточного фундамента. Принять число меньше ширины стен возможно только при кирпичном здании (допускается свесы кладки до 10 см), но в тоже время принимать значение ширины фундамента меньше 30 см для частного дома не рекомендуется, поэтому остается величина 30 см (под внутреннюю стену можно сделать 25 см). Пример предусматривает прямоугольное сечение ленточного фундамента.

Если предварительная ширина фундамента отличается от конечной в меньшую сторону или в большую менее, чем на 5 см, перерасчет конструкции не требуется. При получении значения отличающегося от предварительного более чем на 5 см в большую сторону расчет проводят еще раз с полученной шириной. В данном случае нужно провести расчет веса фундамента заново, но мы не будем этого делать, так как и так понятно что запас просто огромный.

Рассчитать ленточный фундамент по примеру с учетом несущей способности для дома из бруса просто. Действие не отнимет большого количества времени, но обеспечит высокую надежность.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector